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Abstract A hvbrid approach, based on the analysis of an equivalent continuous medium and a
discrete lumped mass system. is presented in this paper for conducting dvnamic analysis of stiffened
coupled shear walls supported on foundations which are flexible rotationally. and in both the
vertical and horizontal directions. The effect of shear deformation on the free vibration behaviour
of coupled shear walls reinforced by stiffening beams located at the top and the base level. and at
an arbitrary level along the structural height is considered. The stiffened coupled shear wall system
is represented by either a continuous system or a discrete system at various stages of the analysis.
The advantage of using these two ways of representing the shear wall system is that the stiffness and
mass matrices required for structural dynamic analysis are easily obtained. Numerical studies on a
typical example structure. carried out by this continuous-discrete approach, to investigate the effects
of shear deformation and the incorporation of stiffening beams on the free vibration characteristics
of stiffened coupled shear wall structures, are also presented.

NOTATION

A, cross-sectional arca ot walls | and 2

4 4 A

A, cross-sectional area of connecting beams

A, cross-sectional area of stiffening beams

h clear span of connecting beams

E elastic modulus of walls and connecting beams
E. elastic modulus of stiffening beams

) clastic shear modulus of walls and connecting beams
G elastic shear modulus of stffening beams

H total height of walls

H, position of the intermediate stflening beam
H, height of fateral unit faree applied on walls
h storey height

o1 second moment of area of walls 1 and 2

/ [ +1-

I, second moment of area of stiffening beams
1 seeond moment of area of connecting beams
K, horizontal foundauon suffness

K. rotational foundation stittness

K. vertical foundation stiffness

/ distance between centroidal axes of walls

M applied moment

Q total shear torce in walls

7 laminar shear in the equivalent medium

N relative settlement of walls

S.. relative flexural rigidity of stiffening beams
T axial force m each wall

[ shear foree in stiffening beams

A height coordinate

total lateral deflection of walls
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Ty lateral deflection of walls due to bending

Yo lateral deflection of walls due to shear deformation

T T modifying factor for caleulating shear deformation of connecting beams. stiffening beams and walls
with average cross-sectional shear stress

t rotational base detformation

P density of walls

a fly structural parameters

INTRODUCTION

As the height of buildings increases. it becomes more and more important to provide the
structures of buildings with sufficient stiffness against lateral loads arising from wind or
earthquakes. Reinforced concrete shear walls are recognized as one of the more efficient
structural systems for such purposes (Irwin. 1984) ;. however, such walls are very often
weakened by vertical bands of openings which are required for doors, windows and cor-
ridors (Fig. 1). These walls with openings. called pierced or coupled shear walls, behave
like a system consisting of two vertical parallel cantilevers coupled by intermittent cross or
lintel beams with rigid joints throughout the structural height. Over the years, numerous
studies have been carried out on the static analysis of coupled shear walls (Rosman. 1964 ;
Coull and Choudhury. 1967 Tso and Chan, [972), and a convenient summary of the
principal methods of analysis has been provided by Taranath (1989). These studies have
led to development of a more effective configuration, called stiffened coupled shear walls,
in which the stiffness of the coupled walls 1s improved by stiff deep beams or belt trusses
incorporated at various levels (Coull, 1974 : Choo and Coull, 1984 ; Chan and Kuang, 1988,
1989), resulting in beneficial effects on the behaviour of the structural system.

In most practical situations. the width of the walls (say, of the order of 6-10 m) will
be much larger than the depth of the cross beams connecting the walls [see Fig. 1(a)], since
a typical storey height for buildings is only of the order of 3 m and the depths of the cross
beams are less than the storey height. Consequently the bending moments fed into the walls
from the connecting beams at each floor level tend to be relatively small compared with the
wall moments over most of the height. This is the opposite of the situation with conventional
rigidly connected building frames. where the beams play roles as important as columns for
moment resistance. Based on this tact. an idea using a continuous medium with equivalent
stiffness to replace the discrete connecting beams was proposed. This idea has led to the
establishment of a simple yvet accurate continuum method, with much less data preparation
effort and computational costs involved compared with discrete methods (e.g. finite element
method). for conducting the static analysis of this type of structure (Coull and Smith,
1967). However, employing the continuum method for the free vibration analysis of coupled
shear walls, which is inevitably required for obtaining the natural frequencies and mode
shapes to assess the loads induced by dynamic effects of wind or earthquakes and to perform
related structural design calculations. results in a sixth-order differential equation for which
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Fig 1. Suffened coupled shear walls on flexible foundation.
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there is no closed solution. To overcome this mathematical difficulty, techniques based on
Galerkin’s method of weighted residuals and Ritz—-Galerkin’s method have been proposed
for approximate solution of the equation (Coull and Mukherjee, 1973 ; Mukherjee and
Coull, 1973, 1974). These techniques enable the eigenvalue equations for structural free
vibrations to be reduced to a set of linear equations. Thus. the original complex differential
equation is converted to a set of linear algebraic equations for which there are standard
solutions. Nevertheless, it is very hard to estimate the inherent errors arising from the
approximation in the continuous approach, especially when coupled shear walls are stiffened
by stiff beams and are supported on flexible foundations. In addition. previous studies on
the free vibrations of coupled shear wall structures by the continuous approach have been
conducted without taking account of shear effects.

A continuous-discrete approach, based on the analysis of an equivalent continuum
medium and a discrete lumped mass system. which overcomes the above-mentioned short-
comings whilst maintaining the advantages of the continuous approach. has been developed
for the free vibration analysis of coupled shear walls (Li and Choo, 1994a-—). The basic
idea of the hybrid approach is to represent the coupled shear walls as both a continuous
system and a discrete system at different stages of dynamic analysis. By so doing, it is
possible to obtain, relatively easily, the stiffness and mass matrices required for dynamic
analysis. The accuracy and efficiency of the continuous-discrete approach have been verified
against experimental data and classical methods of analysis.

The purpose of this paper is to extend the continuous-discrete approach to the free
vibration analysis of stiffened coupled shear walls situated on flexible foundations, allowing
for the effect of shear deformation. The stiffening beams may locate at the top and bottom
of the structure and at an arbitrary intermediate level along the height of the walls. The
effects of shear deformation and the reinforcement of stiffening beams on the free vibration
characteristics of coupled shear wall systems are investigated.

OUTLINE OF METHODOLOGY

For dynamic analysis of structural systems. both the mass and stiffness matrices are
required. In order to obtain these two matrices for a stiffened coupled shear wall structure
supported on a deformable foundation, first consider the structural system as a discrete
system as shown in Fig. 2(b). This is the multi-degree-of-freedom lumped mass system
commonly used for dynamic analysis of structures in engineering. The mass matrix M of
this discrete system can easily be obtained by

M =diag [ m,.m.c . oomem, L (N

where m, (i=1.2,.... n+ 1) are the lumped masses at various locations along the height
of the walls and # is the number of the lumped masses above the ground.

m
}
m
2
P=1
- m
[}
Hp
H.
m n
J Ea N+1
(a) continuous system (b) discrete system

Fig. 2. Analvtical svstems.
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The mass of coupled shear wall structures 1s mainly due to the walls ; because the wall
can be regarded as uniform throughout s height. it 1s rational and convenient to assume
that the mass of the coupled shear wall structures may be represented by a number of
lumped masses located evenly throughout the height of the walls. Thus the lumped mass
m; can be simply calculated by

mo- My fori= lorn+ 1 (2a)

|
i, \ forl <7< n+1. (2b)

H

where M 1s the total mass of the structure
The stiffness matnx K of the structure can be obtained by inverting the flexibility
matrix F. 1¢.

k - F 3)

The values of the /th column of ¢lements in the fexibility matrix F for the structure
considered represent the lateral dellections of the walls at all levels where lumped masses
are located. induced by a unit force applied horizontally at the location of the ith lumped
mass. For this purpose. consider the stitfened coupled shear walls as a4 continuous system
[shown in Fig. 2(a)]. The entire flexibilitn matrix of the structure may be formed by
repeating the static analysis for a unit Literal toree on the walls at each and every level for
which there 1s an assumed Tumped mass

Having obtained both the muss and stiftness matrices, the free vibration analysis of
the suffened coupled shear walls can be conducted by solving the following standard
frequency equation and eigenvalue cquittion for mulu-degree-of-freedom systems :

ko M0 4)
Ko M = 00 (5)

where « and u are the cireular Irequency and defiection vector of vibration. respectively, of
the structure.

Obviously. the key aspeet of the approach described above is the derivation of the
lateral deflection expressions for clastically based stiffened coupled shear walls subjected to
a unit horizontal force at an arbitrars fevel,

LATERAL DEFLECTION EXPRESSIONS

Consider an elastically based coupled structural wall system stiffened by a top and a
bottom stiffening beam and an intermediate stiffening beam at the level x = H,, as shown
in Fig. 1. This system is subjected to a horizontal unit force at the position x = H, [Fig.
2(a)]. The connecting beams of the system are assumed to be replaced by continuous
laminae with cquivalent stiffness. 1tis further ussumed that the centre-line of laminae passes
through the points of contraflesure of the connecting and stiffening beams. If a ““cut” is
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Fig. 3. Substitute structure.

made along the centre-line of laminae (Fig. 3), the relative vertical deflection of the cut
ends of the laminae must be zero. This leads to the following compatibility equations:

if H, < H,

Ay Obu, hb'qs  buyhgs

/ - _
dx ' G(A4,+A-) 12El, GA.

1 1 1 H, H, m
——|— T,dx+ X Ldy |—s = f x<H (6
E(Al + AE)I:L (,dx+£[ T, d\+d”' T_dr} s=0 forH,<x (6a)

dys Qb hb'q  bivhg,
dx ' G(A,+A4,) 12EI, GA,

1/1 1 [ R
_E<A1+A:>[ T,dx+ Tldx]—s:() forH <x<H, (6b)

0 JH,

dyaro Obu,  hb'qy  buyhy,
dx ' G(4,+4,) 12EL,  GA,

1 /1 I
— E (AI + AZ)J” Ty dx—s=0 for0<x< Hl (6C)

andif H, < H,

dyue Obu, hh}‘]: buwhy-
dx G(A,+A4,) 12El, GA,

1 1 1 , " \
—(+ T,dx+ T, dx+ T.dx|—s=0 forH, <x<H (7a)
E\A, A: 0 H H

»

dyu i Obyu, _ hb}fll _ buyhy,
dx G(A4,+4,) 12El, GA,

1 /1 1A\ [H »
_ C Y [—§ = b S
E(A, + A:)[ﬁ T, d.x+L” T, d.\} s=0 forH,<x<H, (7b)
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dvase Ohp, _ hb3(10 _ bunhg,

/
dx | G(4,+A4,) I12EL,  GA,

1/1 1N\ (™
— E(A} + A_) L Tydx—s=0 forO<x<H, (7c)

where V0. Go. To: Vagrs 4. Tooand vys. ga, T, are the lateral deflection of the walls, the
laminar shear in the connecting beams and the axial force in the walls. The subscripts 0, 1
and 2 represent the region between the base stiffening beam and the lateral unit force or
the intermediate stiffening beam; between the lateral unit force and the intermediate
stiffening beam ; and between the lateral unit force or the intermediate stiffening beam and
the top stiffening beam, respectively. The successive terms represent the vertical deflection
of the midpoint of the lamina due to the bending and shear deformation of the walls,
bending and shear deformation of the laminae, axial deformation of the walls and the
relative vertical foundation settlement.
The moment—curvature relationship for the walls is

d*y
EISY M 11 ®)

dx-

(1 is the sum of the second moments of area of walls 1 and 2), where the axial forces in
each wall at different levels are given by :

if H, < H,
~H
To= Vot J g: dx forH, <x<H (9a)
rH rH,
T, = le+J g, dx+ ‘ g, dx forH <x<H, (9b)
H, ur
H H, H,
T, = V,m+J g dx+ [ g, dx+ Vm\+J godx for0 < x < H, (9¢)
H,, JH, X
andif H, < H,
rH
T.=V,+1| ¢.dx forH, <x< H (10a)
rH rH,
T, =V,+| gdx+V, + g, dx forH, < x < H, (10b)
JH, Y
rH H, H,
To=V,+1| g-dx+1}, +J q dx-l—j godx for0<x<H, (10c)
JH, H X

»

in which V', and V', are the shear forces in the top and the intermediate stiffening beams,
respectively.
The applied bending moment M, can be represented by

(11)
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The total shear force in both walls O can be expressed as

I x<H,
0= 0 x>H, (12)

The laminar shear flow intensity ¢ can be obtained by differentiating the axial force in
each wall, i.e.

dr
- 13
7 dy (13)

Differentiating eqn (6) or (7) and combining eqns (8) and (13) to eliminate the variables
v and q yields the governing equation for 7

T = =M, (14)

where

121,/ 12uELN " 14
e —— (] + He wh) ¥ = y(l+ i>
hb* I GAb® A A5l

(A = A, + A,) for which the complete solutions are as follows:

it H, < H,
T, = B-cosh ax+ C- sinh ax forH, <x< H (15a)
T, = B, coshax + C, sinhox+ - (H,—x) forH, < x < H, (15b)
e
Ty = Bycoshax + Cysinhax+ ' (H,—x) for0 < x < H, (15¢)
e
andif H, < H,
T. = B-coshav+ (- sinhax forH, <x< H (16a)
T, = B, coshax+ C, sinh ax forH, < x < H, (16b)
Ty = Bycoshax+ Cysithax+ - (H,—x) for0 < x < H,, (16¢)
I

where B,, C,, By, C,, B, and C, are integration constants.
The corresponding expressions for the laminar shear, derived by using eqn (13), are
given by

ifH <H,
q- = —(B,asinhax+ C,xcosh xx) forH, < x< H (17a)
g, = — (Blocsinh xx+ Cxcosh xx — ') forH <x<H, (17b)
%

go = — (B(,ot sinh 2x + Cyx cosh 2y — ) for0 < x < H, (17¢)

52
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andif H, < H,
g> = —(B,asmhax+ C,xcosh xx) forH <x< H (18a)
¢, = — (B asinhax+ C,2cosh ax) forH, < x < H, (18b)
gy = — (Borx sinh 2x 4+ Cya cosh xx — %) for0 < x < H,. (18¢)
o

To determine the shear forces in the stiffening beams, consider the following com-
patibility requirements at the points of contraflexure :

ifH, <H,

/ dyMZ \ M_leb} buml Vm\
d’\‘ x=f lemlIml Gm!Am(

1/1 | H, "y H
Y Tdx+| Tidx+| Tpdx|-s=0 (19a
e[ mase [ mose [ masfemo oo

P

d"wl meb3 b:uml le 1 1 ] H]
l,;‘i .- S _ — | — —_— Td - =0 19b
dx =H, 12Em|1m1 GmlAml E Al * AZ 0 xS ( )
d}’ MO l/mbb3 b.u'mb Vmb
Y, _ o —5=0 19
d.Y V= QO 12 mhlmb GmbAmb s ( C)
and if H, < H,
d}"Mz thb} bﬂm: ij
d~\ Ve i lem\Im[ GmlAmi
1 1 1 H, H H
L L T, dx T Tydx |—-s=0 (20
R e
dl‘ M1 I/mlb3 h.uml l/ml 1 1 1 H,, Hl
fpas _ S — = T, do T,dx |—s=0
dx Iv=#, ]2Em11m| GmlAml E<AI * A2 0 ’ dr H, e ’
(20b)
dyao Vb Blimy Vi
/& ~ . —s5=0, 20
dx v= 0 12E:mblmb GmbAmb g ( C)

where fn. Enie G 1ot Amcs B Bty G Loe Ami s a0 fp, Fnbs Gmps fmps Amp are the
modifying factor for calculating shear deformation, Young’s modulus, the shear modulus,
the second-moment of area and the cross-sectional area of the stiffening beams at the top,
the intermediate and base level of the walls, respectively, and V., is the shear force in the
bottom stiffening beam.

By equating corresponding terms in eqn (6) to eqn (19) and terms in equations (7a—)
to eqns (20a—) at level x = H, H, and 0, the shear forces V,,,, Vi and Vy, in the stiffening
beams are found to be

Viw = SucHlq: (H) — O(H)] (21a)
Vi = SwHlg,(H))~ BO(H,)] (21b)
Vaw = SmnH[go(0)— BO(0)], (21¢)
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where
Elbyu,
B = Y
GAl
and
E 12u, El I\
Sml — mlImth <1+ #bE7b><] + lzﬂmtEml ml) (223)
ELH GAb? Gy Ay b
E .I.h 12u, El 120 B\ ™'
S, = <1+ o ")<1+ s > (22b)
ELH GA b G Amib?
E  I..h 12u,E] 12u E -1
Smb — mb4mb (1+ 2lub b)(l + .u'mb mblmb> . (220)
ELH GAb? G A b

The values of B,, C,, B,, C,, By and C, can be determined by considering the boundary
conditions. The boundary conditions of the problem are:

(1) the vertical force equilibrium requirement in the walls where the top and the
intermediate stiffening beams are located, and at the position of the unit force ;

(2) the compatibility requirement for the vertical deflection of the assumed “‘cut” end
of the laminae at the position of the unit lateral force, the intermediate stiffening beam,
and the bottom stiffening beam.

These result in:

ifH, < H,
Ta(H) = Vi, (23)
TZ(Hp) = Tl(Hp) (23b)
T\ (H\)+ V= To(H)) (23c)
g1 (H,) = q,(H,)+ 8 (23d)
qi(H) = qo(H)) (23e)
Vmbb3 b#mh Vmb .
O Bt ™ G 0 (230)
andif H, < H,
T,(H) = Vi (24a)
T, (H)+V, =T (H)) (24b)
T,(H,) = Ty(H,) (24¢c)
q,(H,) = q.(H)) (24d)
g, (H,)+ B = qo(H,) (24e)
3
- V.
8, Vb . bt Voo p— (24f)

- 12E‘mblmb GmbAmb

where the base rotation 6, and the relative settlement s of the walls at the foundation are
given by
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M. (0)—-T -V,
0, = M.(0) - -IL’((,O)L,,L*’[ (25a)

Lo D0+ Vi, (25b)

in which K, and K, are the rotational and vertical elastic stiffnesses of the foundation,
respectively.

Substituting eqns (15), (17). (21) and (25) into eqns (23a—f) and substituting equations
(16), (18). (21) and (25) into eqns (24a-f) yields two sets of linear equations, namely:
itH < H,

B,[coshaxH+ S, xH sinh aH]+ C,[sinha H+ S, aHcoshaH] =0 (26a)
(B,—By)coshxH,+(C, - C))sinhaH, =0 (26b)
B [coshaH | — Sy2H sinhaH, |+ C[sinhaH | — S, ,aH cosh aH,]

~ BycoshxH, —CysinhaH, = — (—; —ﬁ)SmiH (26¢)
o

1 )
(B, —B,)sinhaH,+(C.—C)coshaH, = — 5 (% —ﬁ) (26d)
2
B, sinhaH, +C, coshxH, ~ B,sinhaH, —C,coshaH, =0 (26¢)
N b ¥
By — 2V + S H)C, = — ( it )(l + S H) + <7 - ﬂt‘)Hp (26f)
* / o
andif H, < H,
Bi[cosh 2H + S, 2 H sinh xH] + C: [sinh aH + S, H coshaH] = 0 (27a)

Bi[coshaH, — S xHsinhaH |+ C,[sinhxH, — S, 2H cosh aH ]

— B, coshaH, —C,sinhxH, = — <'2 B)SmlH (27b)

o
(By —By)coshaH,+(C, —Cy)sinhaH, =0 (27¢)
B.sinhaH, +C-coshxH, — B, sinhoaH, —C,coshaH, =0 (27d)
1 Ay
(B, —By)sinhaH,+(C, —Cy)coshaH, = — S <% —ﬁ) (27¢)
a\ g2
s /1, L3}
By —2(1+ S HYCy = — < ‘2 _/j)( I+ S H) + (7 - “"; #f)Hp, (271)
o o’
where
- l%E]hl3 . 12E1L,

We=rAetrn. /.=

k] ly =
K. hb' K hb’

The solutions of the simultaneous equations {26a—f) and (27a—f) give the values of the
integration constants B,, C,, B, C,. B, and C,,.

Having determined the values of B., C.. B,. (', B, and C, the axial force in the walls
can be obtained from eqns (15) and (16). Then. the lateral deflection expressions of the
walls due to bending can be derived by integrating eqn (8) twice, i.e.
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if H, < H,

2

1 ¥ H /
Ym =51 1- L (3x—H,) =% — — (B, coshax+ C, sinhox) + D, x + F,)
EI o? 6 4

forH,<x<H (28a)
1 3 x| )
Yy == [1—=1)3H,—x)— — — (B, coshax+ C, sinhax)+ D, x+F})
EI %’ 6 4

forH, < x < H, (28b)

1 ¥ x| .
Ymo = EI[(I - ;l)(3Hp—x) i 41—2— (B coshax+ C, smhozx)-i—Dox-FFo)}

for0 < x< H, (28c)

andif H, < H,

1 [ ¥y H? I ]

Yar=—||1— LI>(3X—HF)J — — (B, coshax+ C, sinhox) + D, x + F,)

E]L Cxl 6 oA 4
forH, <x<H (29a)

L[ y HY | : |

Y = {1— 51 )Bx—~H,)— — — (B, coshax+C, sinhax)+ D, x+ F,)

EI_ o 6 o d

forH, <x<H, (29b)

1 ¥ x| A
Yo == || 1— Ay (3H,—x) Al — (B, coshax+ Cysinhox) + Dyx+ Fy)
El o2 6 4

for0<x< H,. (29¢)

The other integration constants D,, F,, D, F,, D, and F, can be determined by
satisfying the following wall deflection compatibility requirements:

ifH, < H,
Yumo(0) =0 (30a)
Yio(0) = 6, (30b)
Yuo(Hy) = ya (H)) (30c)
Yo (H ) = yin (H)) (30d)
yan(H,) = yun(H,) (30e)
Y (H,) = v (H,) (30f)
and if H, < H,
Yuo(0) =0 (31a)
Yuo(0) = 6, (31b)
Yuo(H,) = yan (H)) (31c)
Vuwo(H,) = vin (H,) (31d)
P (Hy) = v (Hy) (3le)

Y (Hy) = yi(Hy). (311)
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Equations (30) and (31) result in:

it H, < H,

D,

F

D,

R

/
=, (B, — By)sinhaH, +(C, —Cy)coshaH ]|+ D,

/

— (B, —By)coshaH, +(C, —Cy)sinhaH |+ (Dy—D)H, + F,
52

/
&[(B2 —B,)sinhaH,+(C, —C)coshaH, ]+ D,

/
Fy =— (B, —B;)coshaH,+(C.—C,)sinhaH, ]+ (D, —D,)H,+ F,
i

and if H, < H,

D,

F,

D,

D,

F,

il

I

Ii

/

-Cy+EIG,

o

/

N

o

/ _ . .

.y [(B, —By)sinhaH, +(C, - Cy)coshaH, ]+ D,

/
— [(B) = By)coshaH,+(C, — Cy)sinhaH, )+ (D, —D,)H,+ F,

o2

/
32[(83~Bl)sinhocHI +(C,—-C)coshaH, ]+ D,

!
~=[(B;—B,)coshaH, +(C,—C,)sinhaH, |+ (D, —D-)H, + F,.

52

(32a)

(32b)

(32¢)

(32d)

(32€)

(32f)

(33a)

(33b)

(33¢c)

(33d)

(33e)

(33f)

The lateral deflection of the walls due to shear deformation, y,, can be calculated from

o X 1
[(;A Tk, YSH
Yo = % “, H/, | s
Ga Tk, T

where K, is the foundation stiffness in the horizontal direction.
The total lateral deflection of the walls, v. is

Y=Yyt

(34)

(35)
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Table 1. Dimensions and properties of example structuret

Wall section : 0.5x8m A, =A.=4m" [, =1, =21333m*
Coupling beam section: 0.5%x0.333m 4, =0.1667 m* I, = 0.001543 m*
Stiffening beam section : 0.5x1.0m A, =05m I, = 0.04167 m*
H=60m h=3m h=2m /=10m
E=FE,=15x10°%Nm - G=0G,=6xI10°kNm - p=2400kgm *

*1,, I,. second moment of area of walls 1 and 2 p. density of walls.

NUMERICAL EXAMPLE

A typical coupled shear wall structure reinforced by the stiffening beams positioned at
the top and the bottom of the walls and at the middle of the structural height is analysed
as an example. The dimensions and relevant properties of the structure are listed in Table
1. Three sets of numerical values for the stiffness properties of foundations are considered :

(1) K, = o0, K, = . K, = =, corresponding to a rigid foundation;

(2) K,=272x10° Nmrad " K. =878x10®* N m™!, K, =7.52x108 N m™',
corresponding to a dense soil foundation ;

(3) K,=054x10° Nmrad ', K,=146x10° N m~', K,=136x10* N m~!,
corresponding to a soft soil foundation.

The first 10 natural frequency results, obtained by excluding and including the effects
of shear deformation, of the structure situated on the above-described foundations are
given in Table 2. It is shown that the effects of shear deformation on the fundamental
frequencies of stiffened coupled shear walls are slight, especially in soft foundation situ-
ations, but the effects of shear deformation on the higher frequencies are significant. In
addition, it 1s clear that the shear deformation of the walls. rather than connecting and
stiffening beams, 1s the dominating influence on the free vibration behaviour of coupled
shear wall structures.

To show the effect of the presence of stiffening beams on the natural frequencies of
coupled shear walls, a comparison is made in Table 3 on the first 10 frequencies of the
example coupled shear walls with various stiff beams. The second set of foundation proper-
ties is chosen for this comparison and the cross-section of the stiffening beams considered
is the same as listed in Table 1. It is demonstrated that the natural frequencies of coupled
shear walls increase with the contribution of stiffening beams. which indicates the improve-
ment in stiffness of coupled shear walls due to the incorporation of stiffening beams.

Table 2. Natural tfrequencies of the example structure (hertz)

Mode number
Foundaton Shear effects I T e -

case consideredt | 2 3 4 5 6 7 8 9 10
1 N 1.665 7.001 19.19 3286 35332 7761 1094 1415 1809 2239
C 1.650 6,957 19.04 3275 5319 77.50 109.1 1414 180.7 2237

C+S 1.603 6.884 1843 3247 35285 77.18 108.1 141.0 180.3 2233
C+S+W 1.5353  6.335 1540 2512 36.60 4835 6048 71.85 8282 93.18

2 N 1.085 5322 1224 2355 3793 5835 8569 1185 153.2 1936
C 1.050° 5287 12,18 2337 3780 5821 8550 1182 1530 1934

C+S 1.032 5168 1198 2269 3742 5794 8477 1169 1523 193.0
C+S~W 1.OI8 4957 11.18 1970 30.01 41.83 5454 66.83 7843 89.34

3 N 0.546 3342 9640 2205 3671 35643 8456 1175 152.5 1920
C 0.545 3334 9568 21.84 36.57 5627 8437 117.2 1523 1918

C-S 0.542 3301 9.383 2095 36.08 56.10 83.63 1158 151.5 1916

C+5+W 0.540 3254 8.894 18.17 2895 40.70 5392 6630 78.07 88.91

tC, S and W denote shear effects in connecting beams. stiffening beams and structural walls, respectively, and
N denotes shear effects ignored.
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Table 3. Variation of natural trequencies of the example coupled shear walls (hertz)

Mode number

Stiffening - e i
caset | 2 3 4 5 6 7 8 9 10
N 0.921 4.486 10.48 18.53 2916 41.19 53.68 6598 77.80  88.93
T 0,944  4.693 10.89 1895 2970  41.63 5414 6634 78.16  89.21
T+B 0970 4923 10.89 18.98 30.00  41.79 5447 6650 7843  89.34
T+B+M 1.O18  4.957 1118 1970 30.00  41.83 54.54  66.83 78.43 8934

+T. B and M denote the contribution of the stiffening beams located at the top. the base and the middle level
of the structural height. respectively, and N denotes the absence of stiffening beams.

CONCLUSIONS

A hybrid approach allowing for the effects of shear deformation is presented for the
free vibration analysis of flexibly based coupled shear walls strengthened by a top and/or a
bottom and/or an arbitrary intermediate stiffening beam. This approach, which is based
both on the continuous medium approach for the static analysis to obtain the stiffness
matrix and on the discrete approach for a dynamic analysis for an equivalent multi-degree-
of-freedom system, has the advantage that the advantages of the two types of analytical
approaches can be jointly utilized. Since only the basic structural dimensions and relevant
properties are involved in the present analysis, the data preparation effort for computing
free vibration characteristics of stiffened coupled shear wall structures can be greatly
reduced. However. it should be pointed out that the analysis is restricted to cases where
ET/K,, 1.e. the ratio of the stiffness of the shear walls to that of their foundations, is constant
for every pair of shear-wall and its corresponding foundation, for uniform soil conditions.

The analysis of a typical structure demonstrates that the effect of shear deformation
on the higher frequencies of stiffened coupled shear walls is significant but is minimal
on the structural fundamental frequencies. It is further shown that the free vibration
characteristics of stiffened coupled shear wall structures are mainly affected by the shear
deformation of the walls rather than that of the coupling or the stiffening beams. In
addition, it is anticipated that the introduction of stiffening beams will increase the natural
frequencies of coupled shear wall structures.
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