
'~

f /
Pergamon

002o-7683(95)()()()28-3

VIlI, .rl. ]\(1 :. rp . ..:'-l.9 2h.j. lY%
('(lpvflghl I' 14Y~ EbeVll'1" SCience Ltd

Printed In (,reat Hritaln. All righh rc-.;nved
0020 761'.3 % ~t),:;(J - .00

AI' A,
A
AI.

Am
h

Ie'
Em
(i

(ill

I I
I II
H,
Ii
II' I,
I

I"
I h

K"
K,
K,
!
tf,
Q
'I

S',
T
1 m

A CONTINUOUS-DISCRETE APPROACH TO THE
FREE VIBRATION ANALYSIS OF STIFFENED

PIERCED WALLS ON FLEXIBLE FOUNDATIONS

GUO-QIANG U
College ofStruclural Engmeering, Tongji Cniverslt), 12,9 Siping Road, Shanghai 2000<)2,

People's Repubhc 01' China

and

B, S. CHOO
Department of CI\II Engineering, University of ]\ottlngham. Lnl\er,it\ Park. "iottingham

NG7 2RD. I K

(R('ceired 2.i .4.IH/l{\l ]l)l)4l

Abstract A hvbriJ approach, ba,eJ on the anal)", of an cquivalent contll1UOLb medium and a
discrete lumpeJ mass system. is presented in this papcr I'm conJucting dvnamic analysis of stiffened
coupled shear walls supported on foundations whid1 arc fleXible rotationally, and in both the
vertical and honzontal directions, The effect of shear Jefonnation on the free vibration behaviour
of coupled shear walls reinforced by stiffening beams hlL'ated at thl' top and the base level. and at
an arbitrary level along the structural height is considered The sliftened coupled shear wall system
is represented by either a continuous system or a di,crete system at vanous stages of the analysis,
The ad\antage of using these two ways ofreprcsenlmg the shear wall s)stem is that the stiflness and
ma,s matrices reqUired for structural dynamic analvsls arc ea,ily obtained, Numerical studies on a
typical example structure, carried out by this continuous-discrete approach, to investigate the eft'ects
of shear deformation and the incorporation of stilkl1lng beams on the free Vibration characteristics
of stifkned coupled shear wall structures, are also presented,
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lateral deflection of ",alb due [(1 hcndlnje
lateral deflection of ",ails due t(1 ,hear deformat,,)]]
modifying factor for calculatmg 'ihear deformation of connecting beams. 'ititlening beams and walls
with average cross-sectional shear "lrl.?ss
rotational base deformation
density of walls
structural paramctcrs
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As the height of buildings increases. It becomes more and more important to provide the
structures of buildings with sufficient stiffness against lateral loads arising from wind or
earthquakes. Reinforced concrete shear walls are recognized as one of the more efficient
structural systems for such purposes (Irwin. 1984): however. such walls are very often
weakened by vertical bands of openings which are required for doors. windows and cor­
ridors (Fig. I). These walls with openIngs. called pierced or coupled shear walls, behave
like a system consisting of two vertical parallel cantilevers coupled by intermittent cross or
lintel beams with rigid joints throughout the structural height. Over the years. numerous
studies have been carried out on thc static analysis of coupled shear walls (Rosman. 1964;
Coull and Choudhury, 1967: Tso and Chan. 1972). and a convenient summary of the
principal methods of analysis has becn provided hy Taranath (1989). These studies have
led to development of a more effectIve configuration, called stiffened coupled shear walls,
in which the stiffness of the coupled \valls is improved by stiff deep beams or belt trusses
incorporated at various levels (Coull. 1974: Chao and Coull, 1984; Chan and Kuang, 1988,
1989), resulting in beneficial effects on the behaviour of the structural system.

In most practical situations. thc width of the walls (say, of the order of 6-10 m) will
be much larger than the depth of the cross beams connecting the walls [see Fig. I (a)], since
a typical storey height for buildings is only of the order of 3 m and the depths of the cross
beams are less than the storey heIght Consequently the bending moments fed into the walls
from the connecting beams at each floor level tend to be relatively small compared with the
wall moments over most of the heigh t. This is the opposite of the situation with conventional
rigidly connected building frames. w here the beams play roles as important as columns for
moment resistance. Based on this facl. an idea using a continuous medium with equivalent
stiffness to replace the discrete connecting beams was proposed. This idea has led to the
establishment of a simple yet accuralc continuum method, with much less data preparation
effort and computational costs involved compared with discrete methods (e.g. finite element
method). for conducting the statIC analysis of this type of structure (Coull and Smith,
1967). However. employing the contll1uum method for the free vibration analysis ofcoupled
shear walls. which is inevitahly reqUired for obtaining the natural frequencies and mode
shapes to assess the loads induced bv dynamic effects of wind or earthquakes and to perform
related structural design calculatiolh. results in a sixth-order differential equation for which
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Fig I SlIlTcncd l"'llplcd 'ihcar wall, on flexible foundation.
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there is no closed solution. To overcome this mathematical difficulty, techniques based on
Galerkin's method of weighted residuals and Ritz--Galerkin's method have been proposed
for approximate solution of the equation (Coull and Mukherjee, 1973; Mukherjee and
Coull, 1973, 1974). These techniques enable the eigenvalue equations for structural free
vibrations to be reduced to a set of linear equations. Thus. the original complex differential
equation is converted to a set of linear algehraic equations for which there are standard
solutions. Nevertheless, it is very hard to estimate the inherent errors arising from the
approximation in the continuous approach, especially when coupled shear walls are stiffened
by stiff beams and are supported on flexihle foundations. In addition. previous studies on
the free vibrations of coupled shear wall structures hy the continuous approach have been
conducted without taking account of shear effects

A continuous-discrete approach. hased on the analysis of an equivalent continuum
medium and a discrete lumped mass system. which overcomes the above-mentioned short­
comings whilst maintaining the advantages of the continuous approach. has been developed
for the free vibration analysis of coupled shear walls (Li and Choo, I994a--c). The basic
idea of the hybrid approach is to represent the coupled shear walls as both a continuous
system and a discrete system at different stages of dynamic analysis. By so doing, it is
possible to obtain. relatively easily, the stiffness and mass matrices required for dynamic
analysis. The accuracy and efficiency of the continuous-discrete approach have been verified
against experimental data and classical methods of analysis.

The purpose of this paper is to extend the continuous-discrete approach to the free
vibration analysis of stiffened coupled shear walls situated on flexible foundations, allowing
for the effect of shear deformation. The stiffening heams may locate at the top and bottom
of the structure and at an arbitrary intermediate level along the height of the walls. The
effects of shear deformation and the reinforcement of stiffening beams on the free vibration
characteristics of coupled shear wall systems arc investigated.

OUTLINE OF METHODOLOGY

For dynamic analysis of structural systems. both the mass and stiffness matrices are
required. In order to obtain these two matrices for a stiffened coupled shear wall structure
supported on a deformable foundation. first consider the structural system as a discrete
system as shown in Fig. 2(b). This is the multi-degree-of-freedom lumped mass system
commonly used for dynamic analysis of structures in engineering. The mass matrix M of
this discrete system can easily be obtained by

(I)

where nJ i (i = I. 2..... 11 + I) are the lumped masses at various locations along the height
of the walls and 11 is the numher of the lumped masses above the ground.

P = 1

H

(a) continuous system

Fig. 2. Analytical" stems.

(b) discrete system
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The mass or coupled shear \\all ,tructures IS mainly due to the walls: because the wall
can be regarded as uniform througlhlut Its height. it is rational and convenient to assume
that the mass of the coupled shear \\all structures may be represented by a number of
lumped masses located evenly throughout the height of the walls. Thus the lumped mass
f1l, can be simply calculated by

11/

III

\/, for i I or /I + I
2/1

\1, Inri 1</1+1.
II

(2a)

(2b)

where ,\4, IS the total mass of the ,It lIct UI\.'

The ,tilfness matnx K of thc ,Irllcturl' Gill be obtained by inverting the flexibility
matrix F. I.e.

(3)

The values of the ilh COIUIllIl 1>1 Ck'llll'llts III the llexibility matrix F for the structure
considered represent the lateral delleclilllls of Ihe walls at all levels where lumped masses
are located. induced by a unit forcl' ~Ipplied IwnlOntally at the location of the ith lumped
mass. For this purpose. consider tht.' still"cned coupled shear walls as a continuous system
[shown ill FIg. 2(a)] The t.'lltlrc Ilcxihilit\ m,ltnx of the structure may be formed by
repeating the static analysis for d U111t Lill'rdl !llrct.' on the walls at each and every level for
which there IS an assullled lumped Illa"

Havl11g obtained both the m"" ,1I1d ,tll1m:-" matrices. the free vibration analysis of
the stiffened coupled shear \\dlls GI11 be c011ducted by solving the following standard
frequency eq uation and eigeln ~II uc l'q ua tIon 1'1Jr lllulti-degree-of-freedom systems:

" (, \1 (J

, " (i I\llu n.

(4)

(5)

where u) and u art.' the cIrcular Irl'LJlIl'11l'\ ,md detlection vector of vibration. respectively, of
the structure.

Obviouslv. the kcv aspcct ()f thl' ,Ipprtlal'h described above is the derivation of the
lateral deflection expressions fllr t.'la,IIC,III\ hased stiffened coupled shear walls subjected to
a unit hori/ontal force at an arhltldn Inel

[\IIR\I IJIIIII 111)"- j,XI'RESSIONS

Consider an elastically ba,ed lllUpkd structural wall system stiffened by a top and a
bottom stiffening beam and an Intl'rmediatt.' stJtfening beam at the level x = H,. as shown
in Fig. I This system is subjected to a horilOntal unit force at the position x = H p [Fig.
2(a)]. The connectl11g beams of thl' ,\stelll dre assumed to be replaced by continuous
laminae with equivalent stiflness It IS further assumed that the centre-line of laminae passes
through the points Ill' contralle\llr" ()I the l'Imnecting and stiffening beams. If a "cut" is
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Fig. 3. Substitute structure.

made along the centre-line of laminae (Fig. 3), the relative vertical deflection of the cut
ends of the laminae must be zero. This leads to the following compatibility equations:

dVM' Qh llw1-"-" + _--=---_r__
dx G(A 1 +AJ

hh' q2
l2EIh

I ( I I )[ilil Iii!. ~, ]- E A + A, To dx+ . T 1 dx+ I .T 2 dx -s = 0
1 cOli, " If,

I ( I I )[ ~H, ~, ]--- + --- j To dx+ I T 1 dx -s = 0
E Al A 2 0 "H,

for Hp < x ~ H (6a)

(6b)

hh'qo

12Eh

1( I 1) ~,- -- +-- j .To dx - s = 0
E Al A 2 0

(6c)

1 ( I I \ lfll

!· f' l- -E· +) To dx + .. T 1 dx - s = 0
Al A 2 0 "H,

(7b)
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I ( I I )1X

--+- Todx-s=O
E A I A 2 0

(7c)

where Y~tO' q(), To; rMI' q I, T , ; and l'M2- q2' T2 are the lateral deflection of the walls, the
laminar shear in the connecting beams and the axial force in the walls. The subscripts 0, 1
and 2 represent the region between the base stiffening beam and the lateral unit force or
the intermediate stiffening beam; between the lateral unit force and the intermediate
stiffening beam; and between the lateral unit force or the intermediate stiffening beam and
the top stiffening beam, respectively. The successive terms represent the vertical deflection
of the midpoint of the lamina due to the bending and shear deformation of the walls,
bending and shear deformation of the laminae, axial deformation of the walls and the
relative vertical foundation settlement.

The moment--eurvature relationship for the walls is

(8)

(l is the sum of the second moments of area of walls 1 and 2), where the axial forces in
each wall at different levels are given by:

~H

T, = Vml +1q2 dx

~H

T, = Vml +1q2 dx

for HI' < x ~ H

forH] < x ~ H

(9a)

(9b)

(9c)

(lOa)

(lOb)

(lOc)

in which Vml and k'ml are the shear forces in the top and the intermediate stiffening beams,
respectively,

The applied bending moment .~{. can be represented by

{

Hp-X

AI, = 0 (l1)



Free vibratiOn analysis

The total shear force in both walls Q can be expressed as

Q = {~

255

(12)

The laminar shear flow intensity q can be obtained by differentiating the axial force in
each wall, i.e.

q=
dT

dx'
(13)

Differentiating eqn (6) or (7) and combining eqns (8) and (13) to eliminate the variables
YM and q yields the governing equation for T

(14)

where

(A = A I+A J for which the complete solutions are as follows:

Te=Becoshxx+C:sinhxx forHp<x~H (l5a)

T I = B Icosh xx+ C I sinh xx+ l~ (HI' ~x) for HI < x ~ Hp (15b)
x'

To = Bocoshxx+Cosinh:xx+ ',(HI'~x) forO~x~HI (l5c)
:x-

and if Hp < HI

Te=Bccoshn+Ccsinhn forHI<x~H (16a)

T I = B I coshxx+ C sinh:xx for Hp < x ~ HI (16b)

-.
To = BII cosh :xx + C" sinh n+ ',(HI' -x) forO ~ x ~ Hp, (16c)

:X'

where B 2 , Ce• B io C I. Bo and CI are integration constants.
The corresponding expressions for the laminar shear, derived by using eqn (13), are

given by

q: = - (Be,x sinh :xx + C2 xcosh xx) for Hp < x ~ H

ql = ~(Blxsinhx'Y+CI:xcoshn-~~) for HI <x~Hp

(17a)

(17b)

(17c)
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qc = -(B2asinhax+Ccacoshax) forH, < x ~ H (l8a)

ql = -(Blasinhax+C)acoshax) forHp<x~H, (l8b)

qo = - (Boa sinh :xx + Coa cosh ax - :2) for 0 ~ x ~ Hp- (l8e)

To determine the shear forces in the stiffening beams, consider the following com­
patibility requirements at the points of contraflexure:

I ( I I )[fH
,

fHp fH ]----+- Todx+ Tldx+ T 2 dx -s=O
E Al A, 0 H H

- I P

and if HI' < HI

I ( I I )[fHp fH' fH ]-_. -+ ..... Todx+ T,dx+ T 2 dx -s=O
E A I A 2 0 H H

I' I

(19a)

(l9b)

(l9c)

(20a)

(20b)

(20c)

where J.lml' Emt. Gmt. 1mt, Amt ; J.lm" Em" Gm" 1m" Ami; and J1.mb, Emb , Gmb, 1mb, Amb are the
modifying factor for calculating shear deformation, Young's modulus, the shear modulus,
the second-moment of area and the cross-sectional area of the stiffening beams at the top,
the intermediate and base level of the walls, respectively, and Vmb is the shear force in the
bottom stiffening beam.

By equating corresponding terms in eqn (6) to eqn (19) and terms in equations (7a--e)
to eqns (20a--e) at level x = H, HI and 0, the shear forces Vmt, Vmi and Vmb in the stiffening
beams are found to be

Vnll = Smt H [q2 (H) - f3Q(H)]

Vml = SmH[q,(H)-f3Q(H j )]

Vmh = SmhH[qo(O) - f3Q(O»),

(21a)

(21 b)

(2Ie)
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(22a)

(22b)

(22c)

The values of B2 , C2, B t , C t , Bo and Co can be determined by considering the boundary
conditions. The boundary conditions of the problem are:

(1) the vertical force equilibrium requirement in the walls where the top and the
intermediate stiffening beams are located, and at the position of the unit force;

(2) the compatibility requirement for the vertical deflection of the assumed "cut" end
of the laminae at the position of the unit lateral force, the intermediate stiffening beam,
and the bottom stiffening beam.

These result in :

T2 (H) = Vmt

T2 (Hp ) = T\ (Hp )

T\(H 1 )+ Vml = To(H,)

q](Hp ) = q2(Hp )+P

q](H\) = q()(H\)

T2 (H) = Vmt

T 2 (H\)+ Vml = T\(H j )

T j (Hp ) = To(Hp )

q\(H j ) = q,(H\)

qj (Hp ) +P= qo(Hp )

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

where the base rotation eo and the relative settlement s of the walls at the foundation are
given by
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(2Sa)

(25b)

in which K, and K, are the rotational and vertical elastic stiffnesses of the foundation,
respectively.

Substituting eqns (15), (17), (21) and (25) into eqns (23a-f) and substituting equations
(16), (18), (21) and (25) into eqns (24a f) yields two sets of linear equations, namely:

B}[cosh 'l.H +Smt'l.Hsinh 'l.H] + C}[sinh aH + Smt 'l.H cosh aH] = 0

(B 2 - B I ) cosh xHI' + (C 2 - ( 1 ) sinh 'l.Hp = 0

B I [cosh 'l.H , - Smt'l.Hsinh'l.H , ]+ C[ [sinh'l.H[ - Sm,'l.H cosh 'l.H j ]

. (y)B" cosh xH[ - Co smh 'l.H I = - -;; - f3 SmiH

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

(27b)

B 2 [cosh 'l.H + Smt'l.H sinh'l.H] + C 2 [sinh 'l.H + Sm,r:t.H cosh r:t.H] = 0 (27a)

B}[cosh 'l.H, - Sm,'l.H sinhr:t.H ,]+ C}[sinh 'l.H[ - S11l,'l.Hcosh'l.H , ]

-- B I cosh 'l.H , -- C I sinh 'l.H j = - C~ -f3 )Sm,H

where

(BI-Bo)cosh'l.HI,+(C,-Co)sinh'l.Hp = 0

B2 sinh'l.H , +C} cosh'l.H I -B , sinh'l.H, -C I coshaHI = 0

(27c)

(27d)

(27e)

(27f)

12El
h
/}

I.e = ~

Krhh'

. 12EIb
I· v = ---.

K,hb J

The solutions of the simultaneous equations (26a-f) and (27a-t) give the values of the
integration constants B2 , C}, B

"
C I , BI) and C,.

Having determined the values of Be. C" B\, C, Bo and Co, the axial force in the walls
can be obtained from eqns (IS) and (16). Then. the lateral deflection expressions of the
walls due to bending can be derived by integrating eqn (8) twice, i.e.
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for HI' < x ~ H

and if HI' < H,

for HI' < x ~ H

(28a)

(28b)

(28c)

(29a)

(29b)

(29c)

The other integration constants D2 , F2, D" F" Do and Fo can be determined by
satisfying the following wall deflection compatibility requirements:

YMU(O) = 0

y'uu(O) = On

YMu(Hd = Yw, (H,)

y'uu(H,) =y~,(H,)

YM' (HI') = l'w2(Hp )

Y:~ll (HI') = /<f2(Hp )

YMU(O) = 0

y'uu(O) = 00

YMu(Hp ) = YM' (HI')

Y:'>/o(Hp ) = /'>/, (HI')

y,>/,(H,) = y~dH,)

Y~l(Hl) =/<f2(H 1 )·

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(31a)

(31 b)

(31c)

(31d)

(31e)

(3lf)
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Equations (30) and (31) result in:

I
Do = Co + El8() (32a)

'l.

I
Do = C) + El80 (33a)

'l.

I
Fo = _ Eu (33b)

'l.-

The lateral deflection of the walls due to shear deformation, YQ' can be calculated from

x ::( H p

(34)

where K h is the foundation stiffness in the horizontal direction.
The total lateral deflection of the walls, v. is

(35)
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Table I. Dimensions and propertles of example structuret

261

Wall section:
Coupling beam section
Stiffening beam section:
H= 60m
E = Em = 15 X 10" kj\, m

O.5x8 m4, = A, = 4m'
0.5 X 0.333 m Ao = 0.1667 m'
0.5 X 1.0 m Am = 0.5 m'
h=3m h~2m

G = Gm = 6 X 10" kN m

I, = I, = 21.333 m4

I b = 0.001543 m4

1m = 0.04167 m 4

1= 10m
p = 2400 kg m )

tIl, I,. second moment of area of walls I and 2. p. density of walls.

NlMERIC;\L EXAMPLE

A typical coupled shear wall structure reinforced by the stiffening beams positioned at
the top and the bottom of the walls and at the middle of the structural height is analysed
as an example. The dimensions and relevant properties of the structure are listed in Table
1. Three sets of numerical values for the stiffness properties of foundations are considered:

(1) Kr = Cf), K, = ex, Kh = x:, corresponding to a rigid foundation;
(2) Kr =2.72xlO lo N m rad- I

, K,=8.78xl08 N m'l, Kh =7.52xl08 N m~l,

corresponding to a dense soil foundation;
(3) Kr =0.54xlO IO N m rad I, K,= 1.46x108 N m'l, Kh = 1.36 x 108 N m~l,

corresponding to a soft soil foundation.

The first 10 natural frequency results, obtained by excluding and including the effects
of shear deformation, of the structure situated on the above-described foundations are
given in Table 2. It is shown that the effects of shear deformation on the fundamental
frequencies of stiffened coupled shear walls are slight, especially in soft foundation situ­
ations, but the effects of shear deformation on the higher frequencies are significant. In
addition, it is clear that the shear deformation of the walls. rather than connecting and
stiffening beams, is the dominating influence on the free vibration behaviour of coupled
shear wall structures.

To show the effect of the presence of stiffening beams on the natural frequencies of
coupled shear walls, a comparison is made in Table 3 on the first 10 frequencies of the
example coupled shear walls with various stiff beams. The second set of foundation proper­
ties is chosen for this comparison and the cross-section of the stiffening beams considered
is the same as listed in Table I. It is demonstrated that the natural frequencies of coupled
shear walls increase with the contribution of stiffening beams. which indicates the improve­
ment in stiffness of coupled shear walls due to the incorporation of stiffening beams.

Table 2. Natural frequencies (It the example structure (hertz)

Mode number
Foundation Shear effects '---------_.

case considered t
,

.:I 5 6 7 8 9 10-
_. __.~_._---_. __.-

j\, 1.665 7001 19.1<J 32.80 53.32 7761 109.4 141.5 180.9 223.9
C 1.650 6.957 1904 32.75 5319 7750 109.1 141.4 180.7 223.7

C+S 1.603 6.884 18.43 )2.47 52.85 7718 108.1 141.0 180.3 223.3
C+S .. W 1.553 6.335 15.40 25.12 36.60 4835 60.48 71.85 82.82 93.18

2 N 1.055 5322 12.24 2355 3793 58.35 85.69 118.5 153.2 193.6
C 1.050 5.287 12.18 2337 37.80 58.21 85.50 118.2 153.0 193.4

C-'-S 1.032 5168 11.98 22.69 37.42 57.94 84.77 116.9 152.3 193.0
C+S-W 1018 4957 II 18 19.70 30.01 41.83 54.54 66.83 78.43 89.34

3 j\, 0.546 3342 9.640 22.05 3671 56.43 84.56 117.5 152.5 192.0
C 0.545 3334 9.568 2184 36.57 56.27 84.37 117.2 152.3 191.8

C-S 0.542 3.301 9.38.' 2095 36.08 56.10 83.63 115.8 151.5 191.6
C+S+W 0.540 3.254 8.894 1817 28.95 40.70 53.92 66.30 7807 88.91

t C, Sand W denote shear effects in connecting beams. stIffening heams and structural walls. respectively. and
N denotes shear effects ignored
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Table .' VanatlOn of natural frequencies of the example coupled shear walls (hertz)

Mode number
Stiflening

caset ,
4 6 7 8 9 10-

'\ 0.921 4.486 10.48 18.5.' 29.16 41.19 53.68 65.98 77.80 88.93
T 0944 4.693 10.89 1895 2970 41.63 54.14 66.34 78.16 89.21

TtB 0970 4.923 10.89 18.98 30.00 4179 54.47 66.50 78.43 89.34
T +8+\1 1.018 4.957 11.18 1970 30.00 41.83 54.54 66.83 78.43 89.34

t T. Band M denote the contributlOn of the stiflening beams located at the top. the base and the middle level
of the structural height. respectively. and N denotes the absence of stiffening beams.

( ONCLUSIONS

A hybrid approach allowing for the effects of shear deformation is presented for the
free vibration analysis of flexibly based coupled shear walls strengthened by a top and/or a
bottom and/or an arbitrary intermediate stiffening beam. This approach, which is based
both on the continuous medium approach for the static analysis to obtain the stiffness
matrix and on the discrete approach for a dynamic analysis for an equivalent multi-degree­
of-freedom system, has the advantage that the advantages of the two types of analytical
approaches can be jointly utilized. Since only the basic structural dimensions and relevant
properties are involved in the present analysis, the data preparation effort for computing
free vibration characteristics of stiffened coupled shear wall structures can be greatly
reduced. However, it should be pointed out that the analysis is restricted to cases where
EfJK", i.e. the ratio of the stiffness of the shear walls to that of their foundations, is constant
for every pair of shear-wall and its corresponding foundation, for uniform soil conditions.

The analysis of a typical structure demonstrates that the effect of shear deformation
on the higher frequencies of stiffened coupled shear walls is significant but is minimal
on the structural fundamental frequencies. It is further shown that the free vibration
characteristics of stiffened coupled shear wall structures are mainly affected by the shear
deformation of the walls rather than that of the coupling or the stiffening beams. In
addition, it is anticipated that the introduction of stiffening beams will increase the natural
frequencies of coupled shear wall struct ures.
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